Molecular dosimetry of ethylene oxide: formation and persistence of 7-(2-hydroxyethyl)guanine in DNA following repeated exposures of rats and mice.
نویسندگان
چکیده
The formation of 7-(2-hydroxyethyl)guanine (7-HEG) in DNA of target and nontarget tissues was investigated in male B6C3F1 mice (20/group) and F344 rats (10/group) exposed to 0, 3, 10, 33, 100, or 300 (rats only) ppm ethylene oxide (ETO) by inhalation for 6 h/day for 4 weeks (5 days/week) and mice exposed to 100 ppm ETO for 1 or 3 days or 1, 2, or 4 weeks (5 days/week). The persistence of 7-HEG was studied in mice killed up to 7 days after cessation of the 4-week time-course study. In addition, the formation of O6-(2-hydroxyethyl)guanine and 3-(2-hydroxyethyl)adenine was evaluated in rats exposed to 300 ppm ETO. DNA samples from control and treated animals were analyzed for 7-HEG using neutral thermal hydrolysis, microconcentration, and high-performance liquid chromatography separation with fluorescence detection. Fluorescence-linked high-performance liquid chromatography was used for O6-(2-hydroxyethyl)guanine quantitation, and immunochromatography and gas chromatography-mass spectrometry were used for 3-(2-hydroxyethyl)adenine detection. Analysis of DNA from tissues of control mice and rats revealed the presence of peaks equivalent to 2-6 pmol 7-HEG/mg DNA. In mice exposed to 100 ppm ETO, 7-HEG accumulated to a similar extent in target and nontarget tissues, with adduct concentrations ranging from 17.5 +/- 3.0 (SE) (testis) to 32.9 +/- 1.9 (lung) pmol adduct/mg DNA after 4 weeks of exposure. Concurrent exposures of mice and rats to 100 ppm ETO for 4 weeks led to 2- to 3-fold lower concentrations of 7-HEG in mouse DNA in all tissues compared to rat DNA. 7-HEG disappeared slowly in a nearly linear fashion from the DNA of mouse kidney (t1/2 = 6.9 days) and rat brain and lung (t1/2 = 5.4-5.8 days), which was consistent with the loss of adduct mainly by chemical depurination. In contrast, a more rapid removal of 7-HEG from other mouse (t1/2 = 1.0-2.3 days) and rat (t1/2 = 2.9-4.8 days) tissues was consistent with adduct loss by depurination and DNA repair. Dose-response relationships for 7-HEG were nonlinear in both mice and rats, with the alkylating efficiency of ETO increasing at high exposures.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Molecular dosimetry of endogenous and ethylene oxide-induced N7-(2-hydroxyethyl) guanine formation in tissues of rodents.
The formation of N7-(2-hydroxyethyl)guanine (7-HEG) in DNA was investigated previously in target and non-target tissues of F-344 rats and B6C3F1 mice exposed to >/=ISOdia>/=10 p.p.m. concentrations of ethylene oxide (EO) using fluorescence-linked high-performance liquid chromatography [V.E. Walker et al. (1992) Cancer Res., 52, 4238-4334]. In order to study the dose-responses for 7-HEG at lower...
متن کاملMolecular dosimetry of DNA and hemoglobin adducts in mice and rats exposed to ethylene oxide.
Experiments involving ethylene oxide (ETO) have been used to support the concept of using adducts in hemoglobin as a surrogate for DNA adducts in target tissues. The relationship between repeated exposures to ETO and the formation of N-(2-hydroxyethyl)valine (HEtVal) in hemoglobin and 7-(2-hydroxyethyl)guanine (7-HEG) in DNA was investigated in male rats and mice exposed by inhalation to 0, 3, ...
متن کاملMolecular dosimetry of ethylene oxide: formation and persistence of N-(2-hydroxyethyl)valine in hemoglobin following repeated exposures of rats and mice.
The formation of N-(2-hydroxyethyl)valine (HEVal) in hemoglobin was investigated in male F344 rats (10/group) and B6C3F1 mice (20/group) exposed to 0, 3, 10, 33, 100, or 300 (rats only) ppm ethylene oxide (ETO) by inhalation for 6 h/day for 4 weeks (5 days/week) or exposed to 100 (mice) or 300 ppm (rats) ETO for 1 or 3 days, or 1, 2, or 4 weeks (5 days/week). The persistence of HEVal was studie...
متن کاملDose-Response Relationships for N7-(2-Hydroxyethyl)Guanine Induced by Low-Dose [C]Ethylene Oxide: Evidence for a Novel Mechanism of Endogenous Adduct Formation
Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contri...
متن کاملDose-response relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation.
Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 52 16 شماره
صفحات -
تاریخ انتشار 1992